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Diffusion-controlled growth of 
multi-component gas bubbles 

M. CABLE, J. R. FRADE 
Department of Ceramics Glasses and Polymers, University of Sheffield, Sheffield SlO 2TZ, UK 

Theoretical solutions for some important problems involving diffusion-controlled growth of 
gas bubbles in liquids in conditions of spherical symmetry are presented. It is shown that 
bubbles in systems containing several independently diffusing gases always approach an 
asymptotic composition and a parabolic relation between size and time. Solutions for this 
asymptotic regime have been obtained analytically for growth from zero size and numerically 
for growth from finite initial size; the two solutions agree well for sufficiently large sizes. The 
numerical methods can deal with transient growth from finite size, including the behaviour of 
bubbles of non-equilibrium initial composition. The differences between initial and equilibrium 
compositions make it easy to understand why the transient behaviour of bubbles can involve 
an initial period of shrinkage before the asymptotic regime is established. 

1. Introduct ion 
Experiments have shown that bubbles in glass melts 
often contain two or more gases and that their com- 
positions generally change with time. Understanding 
of refining and of the action of refining agents requires 
the investigation of multicomponent bubbles, see 
Cable [1]. Progress in this area has been slow because 
good experimental data are scanty and because of 
difficulties in solving the theoretical problems: the 
latter can be simplified by assuming spherical sym- 
metry but this is difficult to attain experimentally. The 
shapes of radius-time curves for growing or dissolv- 
ing bubbles have often been claimed to show that the 
process is controlled by diffusion of gas in the melt, see 
for example Greene and co-authors [~5]. However, 
this interpretation has been based on rather crude 
theoretical models involving one or more dubious 
basic assumptions. A more reliable indication of con- 
trol by diffusion in the melt is the increase in rate of 
dissolution observed by Greene and Lee [4] when a 
bubble previously kept stationary was allowed to rise 
freely. 

Most published theoretical studies have been con- 
ceived to deal with bubbles containing only one com- 
ponent although the need for models capable of deal- 
ing with more gases was recognized by Cable [6]; some 
of the more important studies have been by Epstein 
and Plesset [7], Readey and Cooper [8], Cable and 
Evans [9], Duda and Vrentas [10, 11]. The limitations 
of several of these approximations have been demon- 
strated by Frade [12] who showed that it is possible as 
well as very desirable to test numerical methods 
against analytical solutions for growth from zero 
initial size. These analytical solutions have long been 
available for one-component spheres but are here 
extended to multi-component bubbles. The validation 
of numerical solutions by comparison with the equiv- 
alent analytical ones requires computation of large 
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increases in size, which cannot be done efficiently 
without sequential optimization of time steps. 

Approximate quasi-stationary solutions have been 
suggested to deal with diffusion-controlled behaviour 
of gas bubbles in liquids, see, for example, Kr/imer 
[13]. Weinberg and Subramanian [14] found reason- 
able agreement with finite difference solutions for two 
cases involving bubbles in glass melts. Griffin [15] also 
used numerical methods to predict the behaviour of 
carbon dioxide-oxygen bubbles in water and found 
good agreement with experimental data. However 
none of these techniques was tested for accuracy 
against analytical solutions. Also the number of par- 
ticular cases reported by those authors was insufficient 
to assess the overall performance of their finite 
difference methods. 

The present work was undertaken to investigate the 
possibility of deriving analytical solutions for any 
problems involving the growth of multi-component 
bubbles and thus extend the range of tests available 
for numerical methods. Computation had shown that 
for a particular composition of multi-component 
bubble the radius increased linearly with the square 
root of time, and the composition was independent of 
time. The growth rate parameter could be expressed in 
terms of the properties of the system. These solutions 
proved to be closely related to the analytical solutions 
of Scriven [16] for growth of one-component spheres 
from zero size, and thus considerably extend the 
possibilities of rigorously testing finite difference 
procedures. 

2. S t a t e m e n t  of  the  problem 
We consider a spherical bubble in an infinite body of 
uniform liquid. Spherical symmetry is maintained and 
the bubble contains a mixture of n independently 
diffusing gases which may differ in both solubility 
and diffusivity. Diffusivities are independent of 
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concentration, and equilibrium according to Henry's law 
is maintained at the gas-liquid interface; temperature 
and pressure are constant. The gases in the bubble 
behave ideally so that their total molar concentration 
in the bubble is constant at cs. Possible effects of 
viscosity or inertia of the liquid, surface tension and 
interfacial reaction kinetics are ignored. As the den- 
sities of the gases are much smaller than that of the 
liquid, the volume and density of the liquid may be 
assumed independent of dissolved gas concentration. 

Given these conditions, a material balance for one 
solute in the liquid reduces to 

D ~ + - = - -  (1) 
r -~r dt & Ot 

where c and D denote the concentration and diffus- 
ivity of the gas in the liquid, r is radial distance from 
the centre of the sphere and t is time. The flux of gas 
into the bubble of radius a is given by D(Oc/&)., hence 

d (0c) ,  
dt (~ na3Cs) = 4rca2D -~r (2) 

If  a bubble contains n independently diffusing gases 
each of them is subject to an equation of the same 
form at Equation 1, but Equation 2 must be replaced 
by 

d {Oc,'~ 
dt (~ ~za3 giCs) = 4~za2De \Or L (3) 

where ge is the mole fraction of Gas i in the bubble. 
Performing the differentiation indicated yields 

da a dgi Di (Oci" I 
g~d-~ + 3 dt - c~ \ 0 r ] ~  (4) 

and the sum of all terms must satisfy 

da 1 ~ Di (Oc~'] 
dt - Csi=, \ 0 r  L (5) 

The assumption of Henry's law means that the dis- 
solved concentration of gas at the surface of the 
bubble must be 

c~(a) = ~Pg~ (6) 

where Hi is the solubility at one atmosphere and P is 
the total pressure in the bubble in atmospheres. The 
other boundary and initial conditions are written as 
usual, 

Ci(O0 ) : Cio~; t > 0 and 

ci(r) = ci~; r > a, t = 0 (7) 

The following dimensionless variables were used, 

D 1 t Di a 
z = a° 2 f = D1 R a0 

r C i - -  C io  a 
e -- F i -- 

ao Cs 

where a0 is the initial radius of a bubble which grows 
or dissolves from finite initial size. In terms of these 
variables Equations 1 to 5 become 

02F~ ! 0F~ (R)2 dR 0F~ 0F~ 
f ~ +  f ~ -  dz 0e - 0z (8) 

and 

dgi 3 I f i ( d F i ~  _ d R  1 
d--~ = R \ de /R g~ ~ (9) 

d--~ = ~=, \ 0 e  JR (10) 

The interfacial concentration c(a) is now given by 

F , (R)  = ~,g, - ~ 0  ( l  1) 

if c~ = I-IiP/c s and F~ 0 = ei~/cs. The boundary con- 
ditions now are 

F ~ ( ~ )  = 0; z > 0 ;  

F~(e) = 0; e > R, z = 0 (12) 

3. Analyt ical  solutions for g rowth  f rom 
zero size 

Analytical solutions have long been available for 
growth of one-component spheres from zero initial 
size, see Scriven [16]. Similar solutions have not been 
known for multi-component bubbles because of the 
greater complexity of the problem, especially dif- 
ficulties due to variable interfacial concentrations. 
However w e  found, by numerical methods, that 
bubbles growing from finite initial size always 
approached an asymptotic regime having constant 
bubble composition and a linear relation between 
radius and square root of time. This led us to consider 
the possibility of deriving analytical solutions for this 
asymptotic regime of multi-component bubbles. How 
this may be done is now demonstrated. 

If  a bubble grows from zero size with constant 
composition gio~, the interfacial composition in the 
liquid will be 

El (R)  = -- q~i = °~igi~ -- Fio (13) 

Thus, assuming that 

F~(s) = F~(e, z) wi th  s = e/(2z 1/2) (14) 

which implies 

R = 2flz m (15) 

transforms Equation 8 into 

dzr~ 2 f  dF~ 2fl 3 dFt dF~ 
f ~ + - - 2s (16) 

s ds s 2 ds 

and Equation 10 becomes 

(- (17) 
=  S.d 4 i = l  

Integrating Equation 16 gives 

dF~ I - ( s 2  + 2fl~/s)l (18) 
d'---s = AiS 2 exp f 

where A~ is an integration constant. 
After integrating Equation 18 and rearranging, the 

solubility parameter for each component is given by 

c~, = A~ [2flfl~ exp 2fl~] ' ~b(,fl,) (19) 

where fli = fl/f~/2. If  the parameter w = 1 - fl/s is 
now introduced, the following equation defining ~(fli) 
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is seen to be identical to Scriven's [16] relation between 
growth rate and solubility, 

~b(fl,) = 2fl~I~expfl2[1 + 2 w -  (1 - w)-Z]dw 

(20) 

Asymptotic growth of a multi-component gas bubble 
can therefore be described in terms of the same 
relations as growth of a one-component bubble. 

The above relations lead to the requirement that 

i=1 

Since gi~ is independent of time Equation 9 now 
becomes 

(OF~/0e)R 
g~o~ = f -  (22) 

d R / d z  

and the above relations lead to 

g,~ _ ~b, (23) 
~(~,)  

These relations are obviously simpler if all the dif- 
fusivities are the same (f~ = 1, i = 2 . . . .  n). 

When evaluating values of fl the condition 

1 - 1 = 0 

(24) 

must be satisfied and the solution for a multi- 
component bubble reduces to finding the value of fl 
which satisfies Equation 24. This must be done 
numerically. For this purpose a set of discrete one- 
component solutions was used to find the values of 
~b(fli) by polynomial interpolation and the Fibonacci 
method (Beveridge and Schechter [17]) employed to 
minimize the square of the error [E(fl)] 2. This tech- 
nique is easy to use because Equation 20 is a particular 
case of the following general equation which was solved 
by Scriven [16] for a large set of discrete points: 

4~(//,, g) = 2fl 2 

x I~ exp {fl~[1 + 2we - (1 - w)-2]} dw. 

(25) 

The constant Ai can be obtained from Equation 19 
and, on integrating Equation 18 from s = fl with a 
change of independent variable to w = 1 - B/s, the 
concentration distribution is given by 

< ( e / R )  = o~,g,oo - F~o + 2fl2gi~ 

( ' l  - R / e  ,"J2 
x Jo exp p; [1 + 2w - (1 - w)-2]dw 

(26) 

These analytical solutions demonstrate the simplic- 
ity of the asymptotic behaviour of multi-component 
bubbles. They also provide an excellent means of 
testing the accuracy of finite difference methods 
developed for growth from finite size, non-equilibrium 
initial composition of the gas in the bubble or dis- 
solution of a bubble, for all of which analytical solution 
is impossible. 

4. Numerical  solutions 
Neither dissolution nor the transient stage of growth 
from finite initial size can be solved analytically. A 
finite difference technique was therefore developed for 
this purpose and is described in detail by Frade [12]; 
this employs transformation of the space variable into 
x = r /a  = e / R ,  rather than x' = r/ao, which immobi- 
lizes the interface and automatically scales distance in 
terms of the size of the sphere. Algorithms were 
derived to deal with variable space mesh sizes with 
automatic readjustment of the discrete space mesh 
points. Equations 9 and 10 must both be solved to 
calculate the boundary conditions, given by Equation 
11, required to solve Equation 8. Time intervals 
were estimated sequentially to avoid AR > 0.01R 
or Ag > 0.01g. The definition of dimensionless 
concentration adopted makes it possible to solve 
problems which involve a change in the sign of 
[ci(a) - cio~]. Techniques using normalized concen- 
trations of the usual form [ci - ci(a)]/[cio~ - ci (a)], see 
for example Weinberg and Subramanian [14], fail to 
do so because of the discontinuities produced by a 
change of sign of [ci~ - c(a)]. The authors believe that 
this is the main reason for the failure of previous 
attempts to develop accurate general finite difference 
methodg for the behaviour of multi-component 
bubbles. 

Sequential adjustment of time increments permits 
computation of very large increases in size (up to 
R = 105) without requiring undue amounts of com- 
puting time and could also help to minimize errors 
caused by an inappropriate concentration distribution 
at the first time-step. As the effect of the initial tran- 
sient becomes negligible long before such large sizes 
are achieved, growth from zero and from finite initial 
size become indistinguishable at large sizes. 

5. Results 
Many examples with up to five components have been 
computed and, in spite of complex initial transient 
stages, the compositions of multi-component bubbles 
always converged to equilibrium before the size had 
increased by a factor of ten. This fact and the excellent 
agreement between finite difference and analytical 
predictions of growth rate (fl), equilibrium com- 
position and equilibrium concentration profile is con- 
sidered sufficient proof that both techniques give 
accurate results. Differences between analytical and 
numerical asymptotic growth rate constants (fl) were 
always less than 1%. A range of examples for two 
component bubbles is given in Table I. 

In all of those examples it was assumed that ~1 = 
Flo~ and ~2 = F2~: the values of/3' were obtained by 
putting pairs of computed (R, z) data for R >I 100 
into the equation R = 2flz  1/2. It can readily be seen 
that the asymptotic equilibrium composition is depen- 
dent on both relative solubilities and diffusivities of 
the gases concerned. It may also be noted that the 
sixth entry in the table gives, as it should, the same 
result as a one-component bubble. 

Fig. 1 shows typical behaviour for a two- 
component bubble growing from finite initial size 
and non-equilibrium initial composition (pure 
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Figure 1 Transient growth of a two-component bubble from finite 
initial size: ( ) radius, ( - - - )  mole fraction of Gas 1 in the bubble, 
(-- -) asymptotic behaviour. For Gases 1 and 2, respectively,f = 1, 
0.1; F,0 = l, I; ~i = 0.2, 1; gi(0) = 1, 0. 
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Figure 3 Concentration profiles for Gas 2 in the example shown in 
Fig. 1. Conditions the same as in Fig. 2. Value of R: (1) 1.025, (2) 
1.05, (3) 1.1, (4) 1.25, (5) 1.5, (6) 2, (7) ~> 10. 

Component 1). The composition of the bubble converges 
rapidly to the equilibrium value and is within 1% of 
that value by the time that R = 4; the chain line 
shows the analytically predicted asymptotic growth 
from zero size and the dashed line the change in 
composition. Continuing computations to R = 105 
gave gl~ = 0.8008 and/3 = 1.370; the analytical sol- 
ution gave the same values. Many other examples 
gave equally good agreement for the asymptotic 
behaviour and differences between/3 and/3' generally 
become negligible by the time that R = 100. 

Figs 2 and 3 show the dimensionless concentration 
profiles of both gases for the example shown in Fig. 1. 
Transient effects initially influence both the overall 
shapes of the concentration distributions and the 
interfacial concentrations but these effects have largely 
decayed by the time that R = 2. However, represen- 
tation of the profile in terms of (x - 1), as suggested 
by the analytical solution, Equation 26, makes the 
concentration profiles invariant for R i> 10; these 
asymptotic profiles are indistinguishable from those 
given by Equation 26. The two concentration profiles 

occupy different distances because Gas 2 has ten times 
lower diffusivity than Gas 1. Knowing that all bubbles 
eventually attain an asymptotic regime having con- 
stant composition makes it easy to understand why 
some bubbles shrink at first and only later achieve 
their asymptotic growth regime. This can clearly 
happen if the initial bubble composition is too rich in 
a major mobile species; dissolution of this excess in the 
liquid can control the change in size during the earliest 
stages. 

Fig. 4 shows the complex transient behaviour of a 
five-component bubble having a particularly interest- 
ing evolution of bubble composition. Initial shrinkage 
occurs here but the change in size shows quite a rapid 
approach to the asymptotic regime (/3 = /3' = 0.565); 
the actual and asymptotic behaviour is almost identi- 
cal for R >/ 2. Many examples have shown such initial 
shrinkage followed by asymptotic growth (or initial 
growth followed by complete dissolution). In no case 
has there been more than one change in the sign of 
dR/dz, and a sufficient range of parameters has been 
investigated to suggest that only one maximum or 
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Figure 2 Concentration profiles for Gas I in the example shown in 
Fig. 1. The curves are for radii R = 1.025, 1.05, 1.1, 1.25, 2 and 
,> 10 (from left to right). See also Fig. 3, 
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Figure 4 Transient behaviour of a five-component bubble with the 
parameters given in Table II. Curves labelled 1 to 5 show the 
proportions of each gas in the bubble; ( - - - )  change in size, ( - .  - )  
asymptotic growth. 
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T A B L E I Comparison of analytical and numerical predictions for two-component bubbles in asymptotic regime 

Parameters Analytical solution Numerical solution 

Ft,o F2,0 f2 fl gl fl' gl 

0.001 0.01 0.1 0.2330 0.4896 0.02333 0.4898 
0.01 0.1 0.1 0.0804 0.4695 0.0804 0.4697 
0.1 1.0 0.1 0.3294 0.4241 0.3297 0.4243 
1.0 10.0 0.1 1.992 0.3759 1.994 0.3761 

10.0 100.0 0.1 17.66 0.3619 17.67 0.3620 
1.0 1.0 1.0 1.319 0.5000 1.320 0.5000 
1.0 0.5 1.0 1.010 0.5858 1.011 0.5858 
1.0 0.2 1.0 0.723 0.6910 0.724 0.6910 
1.0 0.1 1.0 0.569 0.7697 0.569 0.7597 
1.0 1.0 0.5 1.112 0.5548 1.113 0.5548 
1.0 1.0 0.2 0.894 0.6250 0.894 0.6250 
1.0 1.0 0.1 0.762 0.6751 0.762 0.6751 

minimum is possible in any purely diffusion-controlled 
system. 

The parameters used to produce the results shown 
in Fig. 4 are given in Table II. Species 1 has a relatively 
high solubility and diffusivity but its own equilibrium 
pressure in the bubble (Flo/~) would be only 0.02P. 
This gas therefore dissolves rapidly in the liquid until 
its mole fraction (gl) is very close to 0.02 and this 
causes a decrease in size. Species 2 also has high 
solubility and low equilibrium mole fraction but a 
much lower diffusivity than Species 1. This gas like- 
wise dissolves but does so more slowly than Species 1; 
the faster dissolution of Species 1 nevertheless causes 
a brief increase in the mole fraction of Species 2 before 
it approaches its equilibrium value which, like Species 
1, is slightly below gi = 0.02. Species 3 behaves much 
like Species 2 but the changes occur more slowly (it 
has lower initial mole fraction and smaller F). Species 
4 by itself would have an equilibrium partial pressure 
of 0.5P so it diffuses into the bubble, but does so 
slowly because of its low diffusivity; changes in its mole 
fraction are, however, at first largely governed by the 
faster transport of Species 1, 2 and 3. Meanwhile 
Species 5, which was absent from the initial bubble, 
slowly diffuses in, increasing its mole fraction steadily, 
until it dilutes Species 4 and equilibrium composition 
is achieved soon after that. No gas showed more than 
one maximum or minimum in gi(z) although three of 
them had one extreme. Species 5 increased steadily 
towards its asymptotic value of g5 = 0.484 and this 
caused Species 4 to fall from its peak of g4 = 0.53 to 
an asymptotic value of 0.381. 

Changes in the mole fraction of any gas in a bubble 

seem always to follow a fairly simple course with 
either no maximum or minimum or else only one 
extreme. Well defined maxima of the mole fractions, 
such as seen in Fig. 4, have never been predicted for 
bubbles which grew at all times. These maxima in 
composition usually require an initial decrease to 
minimum size before asymptotic growth is established. 
The last of these maxima usually occurs before the size 
has reached its minimum but occasionally happens at 
almost the same moment. Clearly defined minima are 
usually seen only with bubbles which dissolve com- 
pletely (a subject to be dealt with in another paper) 
and involve gases of widely differing diffusivities. 
Bubbles that begin by shrinking but eventually grow 
seem to show the most complex evolution of gas com- 
position, but minima in the mole fractions of any of 
the constituents are not typical of their behaviour. An 
initial decrease in size requires rapid dissolution of the 
major components of the original bubble. If  the 
bubble already contains large proportions of gases 
which diffuse into it the changes in composition follow 
a much simpler pattern even if there is an initial shrink- 
age. Fig. 5 shows an example of this for the same gases 
as in Fig. 4 but the original bubble now contains 50% 
of Species 5, the major constituent of the equilibrium 
asymptotic bubble. In this case only Species 5 shows 
a maximum during the transient stage, its eventual 
decrease being attributable to the longer time necess- 
ary for Species 4 to reach its asymptotic value. 

Fig. 6 shows an example of a two-component 
bubble which exhibits a minimum in g~ whilst growing 
at all times from a composition very near to the equilib- 
rium one. Note, however, that the scale used to show 

T A B L E  II Parameters and conditions used for the computed results shown in Figs 4 and 5 together with the equilibrium 
composition of the bubble 

Parameter Component, i Fig. 

1 2 3 4 5 

f 0.1 
F, 0 0.2 
~i 10.0 

gi(0) 0.6 
0.3 

g~ 0.01999 
gi~ 0.01999 

0.I 0.1 0.01 0.01 Both 
0.2 0.1 0.5 0.2 Both 

10.0 1.0 1.0 0.1 Both 

0.25 0.10 0.05 0.0 4 
0.125 0.05 0.05 0.5 5 

0.01991 0.0954 0.3808 0.4839 (Num.) 
0.01990 0.0954 0.3807 0.4840 (Anal.) 
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Figure 5 Transient behaviour of a five-component bubble in the 
same system as for Fig. 4 but this bubble initially contained 5 0 0  of 
Gas 5, see Table II. 
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Figure 6 A two-component bubble which shows a shallow minimum 
in gt although it grows at all times: ( - .  -)  asymptotic growth. For 
Gases 1 and 2, respectively, f = 1, 0.01; % = 0.01, 1; F,. 0 = 0.01, 1. 

the minimum is very large and the existence of this 
small minimum might not be recognized in exper- 
imental data. This feature depends on the large 
difference in diffusivity between the two gases. 

6. Conclusion 
Analytical solutions show that there is an asymptotic 
regime for the diffusion-controlled growth of multi- 
component gas bubbles in which radius varies linearly 
with square root of time and bubble composition is 
constant. This behaviour can be calculated by using 
the same methods as those of Scriven [16] for one- 
component spheres of zero initial size. Numerical 
methods show that the behaviour of bubbles growing 
from finite initial size or non-equilibrium gas com- 
position tends quite rapidly towards this asymptotic 
behaviour. The excellent agreement found for rate of 
growth, bubble composition and concentration distri- 
butions between numerical and analytical predictions 
of asymptotic growth is taken to be sufficient evidence 
that both techniques give accurate results. It is there- 
fore assumed that the numerical techniques developed 
here can be used with confidence for other problems, 
such as dissolving spheres, for which analytical 
solution is impossible. 

If the initial composition of a bubble is very dif- 
ferent from its equilibrium value it is possible for 
initial shrinkage to precede the eventual asymptotic 
growth. Changes in bubble composition can then be 
complex; it is possible for maxima or minima to 
appear in the mole fractions of the different gases 
present but only one extreme has been observed for 
any particular species. However, minima are rare and 
shallow where they have been seen. Maxima or minima 
are most likely to occur when the diffusivities of the 
gases concerned are very different. All the wide range 
of cases examined suggest that only one change of the 

sign of the rate of change of size is possible in any 
instance. 
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